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The temporal dynamics in the fluctuations of the plasma floating potentials from an undriven dc glow
discharge argon plasma at an intermediate gas pressure of 250 mTorr and at the range of discharge currents
I=6–50 mA are investigated. In this study, the discharge current I is used as the plasma system’s bifurcation
parameter in analogy with the parameter space of a numerical dynamical system. Over several regions of the
discharge current, the floating potential fluctuation time series data has been indicative of random noise,
periodic oscillations, and irregular fluctuations. As the bifurcation parameter �discharge current� is increased,
the Fourier spectrum of the data shows increased signs of period multiplication, quasiperiodicity, and insta-
bilities. In addition, the computations of the correlation dimension provide some insight into the complex
nature of the instabilities in the glow discharge plasma.
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I. INTRODUCTION

Nonlinear phenomena are observed in a large number of
dynamical systems �1�. An important element of these sys-
tems is the appearance of deterministic chaos �1,2�. Among
fluid systems, gas discharges and plasmas are very rich in
dynamical behaviors due to their inherent striations, oscilla-
tions, waves, etc. Among classical plasma systems, hot fila-
ment discharges �3,4�, dc glow discharge plasmas �5–8�, and
hollow cathode discharges �9,10� have been widely used to
study chaos and instabilities because they are relatively
simple to construct and operate. For a suitable set of operat-
ing conditions �plasma and floating potentials, discharge cur-
rents, ion and electron saturation currents, gas pressures, cir-
cuit impedance, etc.�, various oscillations and instabilities
can be introduced in these plasma discharge systems. These
systems’ transition to chaos has been observed through �i�
period multiplication �11–18�, �ii� quasiperiodicity �19–21�,
and �iii� intermittency �22–25�.

Thanks to the mathematical tools developed in the past
few decades by the pioneers of nonlinear dynamical systems,
the behaviors of complex physical systems have been able to
be more thoroughly understood through time delay embed-
ding techniques �26,27�. A simple system can be constructed
with easily “tunable” parameters such as driving discharge
current or gas pressure. In this way, the study of fluctuations
in experimental systems can be carried out using essentially
the same techniques that have been used on numerical sys-
tems, which have yielded so many beautiful results in the
field of nonlinear dynamical systems �1�. More precisely,
making scalar measurements on an experimental system and
generating a time series can yield insight into the existence
of attractors and the parameter-dependent transitions within
the system’s behavior �26–29�. By these means, researchers
have the ability to undertake a more global understanding of
their experimental systems by considering patterns of behav-
ior change throughout the system’s parameter space.

Previously, nonlinear investigations into the period-
multiplication transition to chaos have considered a variety
of measurable fluctuating aspects: �i� in the hot filament dis-
charges, which include floating potentials �11�, plasma po-

tentials �12,14�, and plasma currents �13� and �ii� in the glow
discharge plasmas, which include electrostatic potentials
�16�, plasma current and voltage �17�, and current density
�18�. Incredibly, the particular observable quantities used in
these plasma systems seem to have become almost detail, as
the results of such investigations have been so remarkably
similar.

In the past, experimental investigations on plasma sys-
tems have shown the occurrence of different transitions to
chaos and instability �11–25�. This is commonly done by
reporting three time series for three different values of the
bifurcation parameter, with one time series in a stable mode,
one in the transition state, and a final time series exhibiting
chaotic dynamics. Depending on the kind of transition to
chaos exhibited by the system, this is an efficient and simple
way to show the existence of the transition, and, more im-
portantly, the possible existence of chaotic behavior in the
system. This is an important type of investigation, a logical
extension of which is a higher-resolution exploration into the
behavior of the experimental system with respect to a “bifur-
cation parameter” �12,30�.

The goal of this paper is to study the instabilities in the
floating potentials from a dc glow discharge plasma by a
more precise control of its bifurcation parameter, i.e., the
glow discharge plasma current. Specifically, the plasma
floating potential fluctuations are measured with a fixed
1-mA incremental step of the discharge current. The bifurca-
tion scheme of the numerical analog �the logistic map as an
example� is first presented and later compared with the ex-
perimental glow discharge plasma system. The similarities
among the argon glow discharge system’s bifurcation dia-
gram obtained in this study, and the ones reported earlier in a
hot filament discharge by Greiner et al. and in neon glow
discharge by Atipo et al., indicate a universal behavior in
both types of plasma discharges.

II. PERIOD MULTIPLICITY IN NUMERICAL SYSTEMS

Our motivation behind this work traces back to the obser-
vation of the well-known behavior of the logistic map
�2,31,32�. One of the most studied numerical systems is the
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logistic map xn+1=rxn�1−xn�, where n=0,1 ,2 ,3 , . . . ,xn as-
sumes a value between 0 and 1, and r is a real-valued pa-
rameter. The plot of xn versus n generated using x0=0.1 is
shown in Fig. 1. The sequence generated by iterating this
map converges to a fixed point for low values of the param-
eter r, e.g., r=2, and can be seen in Fig. 1�a�. There exists an
r value called a first bifurcation point r=�1 beyond which
the behavior becomes a stable two-cycle or single-frequency
periodic behavior which is seen in Fig. 1�b�, forever alternat-
ing between two values. This is the case until a second bi-
furcation point r=�2, where the behavior of the sequence
then doubles its period into a four-cycle, which is seen Fig.
1�c�. This pattern continues as r is increased, passing many
bifurcation points, doubling the period each time until at a
critical value r=�c, where the behavior of the iterated map
loses stability, becoming chaotic as shown in Fig. 1�d�. This
process is known as the period doubling route to chaos.

The bifurcation diagram for the logistic map is taken from
the Wikipedia website �32� whose material’s copyright is re-
leased into the public domain, and is shown in Fig. 1�e�. The
vertical axis x represents the xn values at which the system

alternates and the corresponding values of r are plotted in the
horizontal axis. In this manner, we may understand the be-
havior of the system as dependent upon its parameter r. This
parameter dependence of fluctuation modes has been ob-
served in other numerical systems, as well as in a wide va-
riety of physical systems �2�. The exposition of the similari-
ties of these behaviors and exhibition of the ubiquity of the
phenomena are the driving force behind our current work.
This study is an attempt to take the elegant results from
modern investigations into bifurcation properties of numeri-
cal systems, and extend them into the realm of experimental
dynamical systems. In particular, we wish to construct a bi-
furcation diagram from the fluctuation modes observed in a
dc glow discharge plasma system. By taking time series mea-
surements on the floating potential, we treat the data as
though they were the numerical output of a dynamical sys-
tem, and then proceed in the manner familiar to them.

III. ANALYSIS METHODS

The time series data on the glow discharge floating poten-
tial are subjected to an array of analyses, with the general
goal in mind being to trace the behavior as it shifts between
periodic and irregular fluctuation modes. The determination
of chaos in an experimental system entails many difficulties,
as pointed out very well by Kantz and Schreiber �33�. The
aim of this study is not directly to examine in detail any
chaotic structure in the system, but merely to point out the
regions of stability and instability, and their structures as the
bifurcation parameter changes. In order to characterize the
oscillations and the regions of instability seen in the floating
potential fluctuations, several analysis techniques are used
and described below.

A. Fourier analysis

A time series measurement was taken of the floating po-
tential was initially examined using a standard discrete Fou-
rier transform �33� in order to locate any dominant frequen-
cies inherent in the data. When present, these frequencies
were recorded for the sake of monitoring the evolution of the
system bifurcation. Peak frequencies were counted from the
power spectrum only when the amplitude of the frequency
exceeded ten times that of the average baseline noise level.
This was the standard set for the distinction between noise
and signal in the frequency domain. It is pointed out by
Schuster �2� that “external noise can destroy the fine struc-
ture of the power spectrum.” We sought here only to record
the distinguishable frequencies, in order to construct a rough
bifurcation diagram.

B. Correlation dimension

The time series �x1 ,x2 ,x3 , . . . ,xN� is projected into an
m-dimensional attractor space by the method of delay coor-
dinate reconstruction �26,33�. In this method, m-dimensional
vectors �Xi� are obtained from the time series by using M
number of scalar elements, and a “delay or lag index” � to
construct the vector as,

FIG. 1. Logistic map iterations. �a� For an r value of 2, the
iterations of the map converge to a single value, �b� for r=3.4
��1, the iterations fall into a perfectly periodic fluctuation of two
values �period 2�, �c� for r=3.5��2, the iteration fluctuation
doubles its period to 4, �d� for r=3.8��c, the fluctuation loses
stability, entering a chaotic state, and �e� the bifurcation diagram for
the logistic map in the parameter r space �taken from the Wikipedia
website in Ref. �32��.
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Xi = �xi,xi+�,xi+2�, . . . ,xi+�m−1��� ,

so that Xi�Rm. By this construction, we may create a new
set of higher-dimensional �embedded� data points, which we
may consider an “orbit” in the embedding space. The number
of embedded points which can be constructed in this way is
M, and is given by M =N−�m, where N is the number of
data points in the original time series. As a terminological
note, if the data sampling time step is �t, then the “time
delay” is ��t �33�. This orbit is a geometric “rendition” of
the attractor. A brief discussion of how � is chosen will take
place toward the end of this section, since in our study it is
dependent upon the notion of the correlation sum, and is
discussed below.

Once the time series is embedded, there are many statis-
tics which may be implemented to yield information about
the dynamics of the system being measured. In this particular
study, we computed the correlation sum of the individual
time series taken. This has been a widely used method for
characterizing time series by distinguishing chaotic behavior
from random or periodic behavior. The correlation dimension
is a statistic introduced by Grassberger and Prococcia �34�,
which is computed on an embedded time series. One must
first compute the correlation sum,

C�r� =
1

M2�
i=1

M

�
j�i

M

��r − �Xi − Xj��

for a fixed embedding dimension m. It is a function of the
neighborhood radius r, for M embedded points. This corre-
lation sum is a normalized count of neighbors in the neigh-
borhood of a given embedded reference point. For a properly
embedded time series �34�, the sum computed across the
increasing value of r will tend to show some power law
scaling, determined by the structure of the reconstructed at-
tractor. The computation across r is then made for an increas-
ing value of the embedding dimension �35�. As the embed-
ding dimension is increased, the slope of a linear region in a
log-log plot of this array of the correlation sums will con-
verge to a single slope value, or diverge. Commonly,
d�log10�C�r��� /d�log10�r�� is examined, as any linear region
in log10�C�r�� will show up as a plateau in the derivative. In
the convergent case, the convergent slope value is interpreted
as the correlation dimension.

According to Ref. �34�, when the correlation integrals are
computed using random noise, the slopes will increase in-
definitely as the embedding dimension is increased. They go
on to state that, if the statistic is applied to embedded data
which lie on a strange attractor, then the slopes will reach a
particular value, after which they cease to increase with em-
bedding dimension. However, there are other claims made on
experimental systems based on this statistic in Ref. �34� that
a noninteger value of the correlation dimension implies cha-
otic dynamics �36,37� which is not stated in Ref. �34�. Fur-
thermore, it has been shown that strange �non-integer-
dimension� nonchaotic attractors can exist in numerical
models in the presence of noise �38� as well as in a glow
discharge plasma �39�. It is clear that the strangeness of an
attractor is not a sufficient condition by which to determine

chaos in a system. In this study, we will not attempt to char-
acterize chaos by the correlation dimension alone. The sta-
tistic may be used as an estimate for the dimensionality of
the attractor of the system, if the statistic yields a finite value.
This allows some insight into the geometry of the attractor.

C. Time delay

There arise many difficulties in implementing the time
delay methods �40–42� on experimental data. Of the most
widely addressed is the question of picking a “good” time
delay. There are no embedding theorems which concern this
aspect of delay embedding, since the theoretical data sets are
assumed to be noise-free and infinite, thus rendering the non-
zero delay value arbitrary. This creates original problems for
each experimental researcher who is working with finite,
noisy data. This problem has been addressed by many au-
thors �33,41,42�. It was common for some time to use the
autocorrelation function of a time series to determine the
delay, by either finding the first zero, or finding the point
where the function decays down to 1/e of its initial value
�33�. But it has been shown by Fraser and Swinney �41� that
using the autocorrelation is inappropriate for nonlinear sys-
tems, as it is a linear statistic. It has been suggested to use the
first zero of the mutual information �41�. Though this also
has become popular, it is computationally laborious.

For this study, we used the C-C algorithm of Kim et al.
�42�. This algorithm deals with the properties of
S�m ,N ,r ,��=C�m ,N ,r ,��−Cm�1,N ,r ,�� over a range of de-
lay index �, where C�m ,N ,r ,�� is the m-dimensional corre-
lation sum with fixed neighborhood radius r, and
Cm�1,N ,r ,�� is the one-dimensional correlation sum raised
to the mth power. The computation is repeated for a small
variety of values of r. This statistic is based on the notion
that if the embedded points are independently and identically
distributed �a good embedding�, then C�m ,N ,r ,�� and
Cm�1,N ,r ,�� are equal for all m and r. Thus, by computing
their difference S�m ,N ,r ,�� for multiple values of m, r, and
for a range of �, the first zero crossing and areas with the
least variation with r will indicate a range of delay which
gives an optimum distribution of embedded points in Rm.

In this way, Kim et al. �42� interpret the statistic
C�m ,N ,r ,�� as the serial correlation of a nonlinear time se-
ries, and regard this as a dimensionless measure of nonlinear
dependence, i.e., for fixed m, N, and r values, the plot of this
statistic vs delay index is a nonlinear analog of the autocor-
relation function vs delay index. This method yields an ap-
proximate range for the time delay, which is acceptable,
since the embedding remains largely unaffected by small
shifts in the delay quantity �assuming that the system has
been appropriately sampled�. Not only has it been shown to
be rather robust in its applicability, yet computationally
simple. In this work, several graphs, as a representative of
the typical C-C computations using the experimental data,
are shown in Fig. 2 for embedding dimension m=2, 3, 4, and
5. This particular set is generated using the time series data
�fluctuations in plasma floating potential� from a glow dis-
charge in argon at a gas pressure of 250 mTorr and discharge
current I=15 mA. The zero crossings and delay values of
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least variation with r, which are used for averaging a delay
index, are shown by the dotted window. From these compu-
tations, the experimental delay index was determined, rang-
ing between 4 and 20 for operating range of discharge cur-
rents I=6–50 mA. After establishing a “proper” time delay,
further computations �such as the correlation dimension�
which require this quantity are able to be made next.

IV. EXPERMENTAL METHODS

A. Glow discharge apparatus

The experiment is performed using a dc glow discharge
plasma. The measurement arrangement is shown in Fig. 3.
The plasma is sustained inside a glass tube �inner diameter
4.7 cm and 68 cm long�. The stainless steel end flanges of
the tube are used as the anode and cathode. A 15 k� ballast
resistor is used in series with a 5 kW power supply �5 kV,
1 A� to limit the current through the discharge. A mechanical
plus turbo pump system is used to evacuate the tube to a base
pressure of 3�10−5 Torr. A high-purity argon gas flow at the
rate of 5 SCCM �SCCM denotes cubic centimeters per
minute at STP� is maintained with a mass flow controller,

where the pressure is monitored with an absolute pressure
�Baratron� manometer. The measurement is performed at a
fixed operating pressure p0=0.25 Torr �p0r0=0.59 Torr cm�,
and in the range of discharge currents from 0 to 50 mA �cur-
rent densities from 0 to 28.8 A/m2� with a 1 mA increment.

Single and floating double Langmuir probes are used to
measure the plasma parameters. At the fixed pressure level of
0.5 Torr, the electron number density is found to be 2
�109 cm−3 and the electron temperature to be 	3.0 eV �43�.
A pair of high-voltage probes �Tektronix model P6015A,
bandwidth 75 MHz� is deployed to measure the floating po-
tentials and the fluctuations in the floating potentials. From
the two-point measurement of the floating potential �two
high-voltage probes were separated by 2.6 cm�, an average
electric field strength of 6.3 V/cm is determined in the argon
plasma at 250 mTorr and discharge currents between 0 and
50 mA.

The measurements are performed for fixed glow discharge
currents starting from about 5 mA, and stepping upward by
1 mA increments up to 50 mA. For the entire measurement,
the high-voltage probe is setup at the center of the positive
column plasma. The digitizing fast oscilloscope collects
20 000 data points over an interval of 40 ms at a sampling
rate of 500 kHz for each data run.

B. Experimental results

Typical experimental floating potential fluctuations in the
glow discharge argon plasma for a fixed gas pressure of
250 mTorr and for several fixed discharge currents is shown
in Fig. 4�a�. The corresponding Fourier power spectrum is
shown on the right in Fig. 4�b�. The fluctuations are seen to
be random in the range of discharge current I=6–10 mA
with no major peak frequencies in the corresponding power
spectrum. The periodic oscillations are observed for I
=11–20 mA, which is clearly indicated by the fundamental

FIG. 2. Determination of time delay using the C-C computa-
tional method described by Kim et al. in Ref. �42�. The statistic
S�m ,N ,r ,�� is shown on the vertical axis and the lag or delay index
� on the horizontal axis for embedding dimension m=2, 3, 4 and 5,
respectively. In each graph, four fixed radius values �—r=� /2,
- ··-·· r=�, ¯¯ r=3� /2, and ---- r=2�� are used, from half of the
standard deviation ��� of the scalar data to twice the standard de-
viation, with a half standard deviation increment. The zero cross-
ings and delay values of least variation with r, which are used for
averaging a delay index, are shown by the dotted window. This
particular set was done on the I=15 mA data, and is typical of the
computations obtained in this work. The derived delay index is in
the range of 4–20 with a corresponding time delay of 8–40 	s.

FIG. 3. Experimental setup. A dc glow discharge is sustained
between two electrodes with a 15 k� ballast resistor to limit the
current through the discharge. The main diagnostic used in this
work is the high-voltage probe to measure the fluctuations in the
plasma floating potentials.
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and harmonic peak frequencies in their Fourier spectra.
Above I=20 mA, the fluctuations become unstable �associ-
ated with a broadened spectral structure in the Fourier spec-
trum�.

Here, we attempt to document the shifting modes of be-
havior as dependent upon the bifurcation parameter �the
glow discharge current� for a fixed pressure. We have con-
structed a skeleton of a bifurcation diagram for our glow
discharge system. The power spectrum analyses, a few of
which are presented in Fig. 4, have yielded the distinctions
which the diagram represents. On the vertical axis of Fig. 5
are the dominant frequencies of each of the periodic data sets
�for the data which exhibit clear frequencies in the power
spectrum�. If the signal is dominated by noise, then the spec-
trum shows no dominant frequency. If the signal is unstable,
showing a broadened spectral structure in the low end of the
frequency domain, then the diagram shows a cross-hatched
region. As can be seen, aside from some low current values
�below I=11 mA� where noise seems to dominate, the bifur-
cations occur rather clearly. Yet, as was pointed out earlier,
some small-scale spectral information is lost due to noise
contamination of the power spectrum, and so we may only
record the distinguishable frequencies. Regardless, these
clearly increase in number up to 20 mA, after which the
power spectrum no longer shows dominant frequencies, only
broadened low-frequency peaks. This is the case until
38 mA, where dominant frequencies emerge again, and so
on, as illustrated in the diagram. In fact, beyond the data
presented in this study, this behavior continues, the alternat-
ing stable and unstable regimes with increasing bifurcation
parameter values, indicating parameter dependent intermit-

tencies similar to the ones found on the right side of the
logistic map’s bifurcation diagram in Fig. 1�e�. Thus, our
experimental glow discharge system exhibits a bifurcation
route to instability through frequency multiplication. There
were seen two frequencies which were ubiquitous in the data,
one near 120 Hz, and the other near 1700 Hz. They induce
no harmonics, and seem not to interfere with the other fre-
quencies. These are likely artifacts of some electrical noise;
thus they were excluded from the emergent bifurcation fre-
quencies.

Next, we present the results of the correlation dimension
computations for the plasma potential fluctuations. In Fig. 6,
for the sake of clarity, the derivatives of the correlation inte-
gral d�log10�C�r��� /d�log10�r�� are shown �versus the loga-
rithm of the embedding space neighborhood radius r� for
data from three distinct regions. Figure 6�a� shows 6 mA
from the region of random fluctuations, Fig. 6�b� shows
12 mA from periodic oscillations, and Fig. 6�c� shows
21 mA from the unstable region. Figure 7 shows the param-
eter dependence of the computed correlation dimension on
the system’s states. In this way, as the bifurcation parameter
�discharge current� is changed, one may watch the approxi-
mate change in the dimensionality of the attractor. In the low
current range �6–10 mA�, where the power spectrum sug-
gests that the fluctuations are dominated by random noise,
we may cautiously expect the correlation integral to show no
scaling region. This is in fact the case �see Fig. 6�a��. For the
periodic range 11–20 mA, conventions would have us ex-
pect that the correlation integral would show a scaling region
revealing a low integer dimension. Our findings were some-
what consistent with this convention, but as is indicated by
the dotted horizontal line in Fig. 6�b�, the interpreted dimen-
sion shown in Fig. 7 fluctuates around a value of 2 between
11 and 17 mA. This fluctuation of the dimensional estimate
could be explained by a number of factors. It could suggest
the coexistence of attractors in the data. Since the bifurcation
parameter is not perfectly constant, and the behavior of the
system may be sensitively dependent upon it, then for a
given time series, the data may contain small transient “vis-

FIG. 4. �a� Sample time evolution �time series� data for the
plasma floating potentials at a sampling rate of 500 kHz
�2 	s /point� for various fixed discharge currents. The fluctuations
look random at 6 mA, periodic between 12 and 19 mA, and chaotic
at 21 mA. �b� The corresponding Fourier power spectra are shown
with no characteristic peak seen at 6 mA, two peaks at 12 mA, six
at 15 mA, nine at 17 mA, and thirty at 19 mA. Finally at 21 mA,
the power spectrum yields a broadened spectral structure.

FIG. 5. Distinct frequencies in the Fourier spectrum from Fig. 4
versus discharge current. This graph represents an experimental bi-
furcation diagram for the discharge plasma. The number of distinct
frequencies multiplies as the discharge current is increased. As the
current increases to 21 mA, the plasma shows unstable behaviors.
For data in a region of instability, a cross-hatched region is shown.
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its” to a nonperiodic attractor, if one exists. This would po-
tentially skew the interpreted dimension of an otherwise pe-
riodic attractor, pulling it away from an integer value,
creating a strange nonchaotic attractor �38�. Also, it has been
seen that noise in the data will skew the dimension by small
amounts, proportional to the amplitude of the noise. We did a
simple study of the correlation dimension of a perfect peri-
odic signal �discrete points along a sine wave� with incre-
mental addition of noise. We found that, while the clean sine
wave by itself scaled perfectly to a dimension of 1, the suc-
cessive series, with added noise of increasing amplitude,
showed robust scaling at dimension values, which steadily
increased with the amplitude of the noise. The dimension
increased from a value of 1 for clean data, to a value over 2
for data with noise amplitude which was half the amplitude
of the signal.

At I=18 mA, the scaling occurs near 3, near 4 at 19 mA,
and between 6 and 7 at 20 mA. The existence of strange
nonchaotic attractors may be understood not only with re-

spect to transient intermittency, but can be seen by the bifur-
cation structure itself. As a system bifurcates, the structure of
the attractor also splits in the embedding space. For instance,
just before the transition to chaos, pertinent numerical sys-
tems bifurcate indefinitely many times as the parameter ap-
proaches its critical value. In this state, the attractor assumes
a fractal structure, though the dynamics on it are not chaotic.
This would yield a noninteger dimension. Also, if the geom-
etry of the parameter space is nontrivial, that is to say, if the
periodic region has a complicated boundary separating it
from the unstable region, as has been found in numerical
parameter spaces �44�, then it is possible that within this
periodic window, there are some small areas, or islands, of
unstable values of the bifurcation parameter. This would
serve to skew the dimension of a periodic fluctuation in a
way consistent with �38�, and perhaps make sense with re-
gard to �44�, where such structures are reported to have been
found in the parameter space of the Hénon map �45�. For the
region after the loss of stability, 21–37 mA, the interpreta-
tion of the correlation dimension is very difficult. This region
was initially characterized by the presences of broadened
spectral structure in the frequency domain. This is an initial
suggestion of a chaotic behavior, though not, in itself, a suf-
ficient condition to indicate such. One may then look to the
correlation dimension for a noninteger, low-dimensional
value. For the first value of 21 mA, a scaling region emerges
at a high embedding dimension with a value of approxi-
mately 3.8 as indicated by the dashed horizontal line in Fig.
6�c�. With the absence of a dominant frequency, and the pres-
ence of a noninteger correlation dimension, this is suggestive
of deterministic chaos. Beyond this value, the instability is a
bit different. There is a broadened spectral structure in the
frequency domain, but there is not a clear scaling region on
the correlation integral. For many current values in the un-
stable region, there is a seeming scaling around 12, which
fails to ultimately saturate with increased embedding dimen-
sion. This has been interpreted in the past �36� as a signature
of turbulence in glow discharge systems. It has been pointed
out that “almost all systems reach turbulence via chaos” �37�.

FIG. 6. Computations for the correlation dimension. In �a�–�c�,
d�log10�C�r��� /d�log10�r�� is plotted versus the logarithm of the em-
bedding space distance r for 6, 12, and 21 mA, respectively. The
derivatives of the correlation integrals are examined for any plateau.
�a� We recall from Fig. 4 that the data at 6 mA are characterized by
random fluctuations, and here no saturating scaling regions are
found for all embedding dimensions. Their overall slopes continue
to increase with increasing embedding dimension. For visual clarity,
computations for embedding dimensions 10 and above are shown.
�b� The data set for 12 mA �which showed periodic fluctuations in
Fig. 4� shows the plateau from scaling regions �one may clearly see
the convergence of the slopes at a value of about 1.8�. This satura-
tion occurred robustly at low embedding dimensions �below 50�;
therefore, higher-dimensional computations were avoided to con-
serve computation time. �c� This particular data set did not show a
scaling region until a relatively high embedding dimension of 30
and above. Here, the convergence of the plateaus �linear slopes�
occurs at a value of about 3.8.

FIG. 7. Estimated correlation dimension for the experimental
data and its dependence on the experimental bifurcation parameter
�discharge current�. All estimations of finite dimensions have a mar-
gin of fitting error of 1% in the linear scaling regions. The hatched
regions represent data sets whose correlation dimensions did not
saturate to a finite value with increased embedding dimensions.
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Perhaps this is the case in our system, but in order to deter-
mine precisely the presence of turbulence, a variety of dif-
ferent statistics would need to be applied to the data. This is
somewhat beyond the scope of this investigation. Beyond
this unstable region, after 37 mA, there is observed regions
with a distinct multiple-peak structure in the power spec-
trum, followed by others which show broadened peak struc-
tures. When analyzing the correlation sum for these data, a
surprisingly consistent scaling region between 1.4 and 1.8
was located for most of both spectral types as shown in Fig.
7. For the types with broadened spectral structure, there were
also seen second scaling regions at higher dimensions, be-
tween 4 and 11, but the scaling regions, though distinct, were
not robustly linear. We will not disregard this observation, as
perhaps it indicates a coexistence of attractors in the data, but
the further analysis of it will not be undertaken here. The
succession of the distinct spectral regions continues beyond
the data presented in this study.

V. DISCUSSION

Based on the results presented above, it is clear that the
structure of the parameter space of our system is nontrivial,
even if our study was performed on only a cross section of it.
For the bifurcation parameter, we have distinguished a period
multiplying route to instability, as well as alternating regions
of stability and instability. In this way, we can see that the
complexity of the parameter space is such that there are mul-
tiple transition values of the bifurcation parameter. This has
been observed to be the case with many of the numerical
bifurcations �for instance, observe the bifurcation diagram of
the logistic map in Fig. 1�. Though a further examination of
the regions of instability would certainly yield a deeper un-
derstanding of the chaotic and turbulent phenomena ob-
served, this will have to be undertaken in later studies. The
purpose here was to see, in a somewhat high-resolution man-

ner, how the bifurcation behavior of our system looked along
the dc current parameter. The hopes were to find the behavior
comparable, in some way, to the numerical analogs. This
study seems to have shown something quite like this, though
there are multiple such bifurcation schemes that numerical
and experimental systems tend to exhibit. One driving inter-
est was the findings of surprising complexity in the param-
eter spaces of seemingly “simple” numerical systems, like
the findings of strange parameter space structures in the
Hénon map �45�.

There are more points of comparison which could poten-
tially be sought between our system and the numerical sys-
tems, for instance, finding out whether the locations of suc-
cessive bifurcation points show the scaling pattern which has
been found in numerical systems. Though to do this, we
would need higher resolution sets of data. To do this we
would need a more precise power supply �as well as perhaps
constructing a circuit designed specifically to stabilize the
driving current�, with which we could distinguish more
finely the increments of the current. Future work on this data
may include an analysis of the Lyapunov exponents, or Kol-
mogorov entropies of the data, to distinguish more specifi-
cally the nature of the regions of instability. It would also be
interesting to attempt multiple cross sections of the param-
eter space, for different pressure values, to see the geometry
of the system in its two-dimensional parameter space.
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